不拉磨小说网 > 网络其他电子书 > 人类的知识 >

第65章

人类的知识-第65章

小说: 人类的知识 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



理可信的程度。我们一定不能说如果h′是所说的那个人所知道的某个真的
命题,但不及h,并且如果p/h=α′,那么就那个人来说,p 具有可信度α′;它对于一个可以用h′表示他的全部有关知识的人来说,将只具有这种
可信度。可是这一切凯恩斯无疑是会全部承认的。事实上,反对理由只是针
对叙述上的不够严密,而不是针对这个理论的基本要点。

一个更为重要的反对理由是关于我们认识p/h=a 这类命题的方法。我现
在并不是先验地论证我们不能认识它们;我只是探讨我们怎样才能认识它
们。我们可以看到如果我们不能给“概率”下定义,那么就必然有不能证明
的概率命题,因此如果我们要承认这些命题,我们就必须把它们当作我们的
知识的前提的一部分。这是所有以逻辑方式表达的系统的一个共同特点。每
个这类系统必然要从一组未下定义的名词和未加证明的命题开始。显然一个
未下定义的名词不能在一个推论出来的命题中出现,除非它已经在未加证明
的命题中至少有一个命题中出现过,但是一个下过定义的名词却不需要在任
何未加证明的命题中出现。例如,只要人们认为算术中有未下定义的名词,
那么就必然也有未加证明的公理:皮阿诺有三个未下定义的名词和五个公

理。但是如果我们给数和加法下逻辑的定义,算术就不需要在逻辑的未加证
明的命题之外再有什么未加证明的命题。所以就我们所研究的实例来说,如
果我们能给“概率”下定义,那么凡是出现这个字眼的命题可能都可以通过
推论得出;但是如果不能给它下定义,那么如果我们想要知道有关它的知识,
就必须有一些包含这个字眼的命题,而我们认识这些命题并不需要外来的证
据。

凯恩斯拿什么样的命题作为我们概率知识的前提这一点并不十分清楚。
我们直接认识具有“p/h=α”这种形式的命题吗?如果概率不能以数值计
算,那么α是什么东西?或者我们只认识等式和不等式,即p/h<q/h 或者
p/h=q/h?我认为后老是凯恩斯的看法。如果这样的话,这门学科的基本事
实就是三个而不是两个命题的关系:我们应该从一种三元关系开始

P(p,q,h),

意思是说:在已知h 的条件下,p 的概率小于q 的概率。然后我们也许
可以说“p/h=q/h”。。 的意思是“既不是p(p,q,h),也不是p(q,p h)”。
我们应当假定当h 不变时,对于p 和q 来说,P 是不对称的和传递的。(,) 凯恩
斯的无差别原理如果被我们接受的话,它将使我们能够在某些外界条件下证
明p/h=q/h。就凯恩斯认为正确的限度来看,概率计算可以在这个基础上建
立起来。

上面的等式定义只有在p/h 和q/h 可以比较时才能采用;如果(象凯恩
斯认为可能那样)其中一个既不大子另一个,而它们又不相等,我们就必须
抛弃这个定义。我们可以通过关于两个概率一定可以比较的外界条件的一些
公理来解决这个困难。如果它们可以比较,那么它们就位于从0 到1 之间的
一条路线上。在上面的“p/h=q/h”。。 的定义的右边,我们就必须补充说p/h
和q/h 是“可以比较的”。

让我们现在重新叙述一下凯恩斯的无差别原理。他所要做的是建立使
p/h=q/h 成立的外界条件。他说这种情况将在两个条件(充分的但却不是

必要的)得到满足的情况下发生。设为( )并且为( );那么对于

p j aq j b
a和来说,一定是对称的,而( ), ( )一定是“不可分的”。h j a j b

b

如果我们说A 对于a 和b 来说是对称的,我们的意思大概是说如果h 具
有f(a,b)这种形式,那么

f(a,b)=f(b,a)。

这种情况特别发生在f(a,b)具有g(a),g(b)这种形式时,这也
就是当h 提供的关于a 和b 的知识是由分立的命题所组成,其中一个命题是
关于a 以的而另一个命题是关于b 的,并且两者都是一个命题函项的值的时
候的情况。

我们现在设=( ),q=j bq=j b

(), (), bh=(, )。

pf 我们的公理的大意一定是(a) 在一种适当的规定条件下,它使得()和ja(a) j

(b)的交换不产生任何差别。这就得出
(,)=() (,)假定()和()

j() a /f ab j b /f ab j a j b

对于f(a,b)来说是可以比较的话。这个结果得自这个一般原理

j() / ψ( )= j( )ψ( );

aa bb

也就是说,这个结果得自这个条件:概率依靠的不是个别主词而是命题
函项。顺着这些想法,我们似乎有希望得出也许比凯恩斯的原理更加不证自

明的无差别原理的一种形式。

为此让我们研究一下他的不可分性的条件。凯恩斯把“( )是不可

j a
分的”定义为有两个项目和使得“j ”和“jb”或“j ”具有相

bc
同的意义,并且jb和jc不能同(c) 时为真,(a) 而jb,jc在已知的情况下

h

都是可能的。我认为这并不完全符合他的原意。我认为如果我们假定a 和b
和c 是类,其中a 是b 与c 的和,我们就更加接近他的原意。在这种情况下,

j一定是一个以类为其项目的函数。例如,设是靶子上一块面积,分为和bc

a
两部分。设“j a ,并且“ψ”是“a

a”是“上面被打中的某一点”a

上面被瞄准的某一点”。那么ψ a 就上面的意义来说就是可分的,并且我们
得不出

b/ b

ja/ ψa=j ψ,
a/ a ψ。

因为显然j ψ 大于jb/ b

但是关于我们的前一个条件,即h 对于a 和b 来说应该是对称的,并不
是充分的条件这一点我们还不清楚。因为现在h 包括“b 是a 的一部分”这
个命题,而这个命题并不是对称的。

凯恩斯讨论了ja/ ψa=jb/ ψ 的条件,并且给我们提供了一个失败

b

的例子,在这个例子ψx=x 是苏格拉底。就这个实例来说,不管ψx 可能
是什么,

j(苏格拉底)/ ψ(苏格拉底)=1

而如果心不是苏格拉底,ψb/ψb=0。为了排除这种情况,我立下一条规定,
即“ψx”一定不包括“a 在内。举一个类似的例,设ψx=x 杀死a,ψx=x
住在英国。那么ψa/ψa 就是a 的自杀的可能性,如果a 是英国人的话,而
ψx/ψx 一般来说就是a 披某个名叫x 的英国人所谋害的可能性。显然在多
数情况下,ψa/ψa 大于ψb/ψb,因为一个人杀死自己的可能性比杀死另外
一个任意选择的人的可能性要大。

这样,最重要的条件看来似乎是“ψx”一定不包括“a 或“b”在内。
如果这个条件被满足,我就看不出有任何理由得不到

b/ b

ja/ ψa=j ψ。

我的结论是,无差别原理真正断言的是命题函项之间而不是命题之间的
一种关系。这就是“一次任意的选择”这类说法所表示的意思。这个说法所
表示的意思是:我们要把一个项目仅仅当作一个满足某一命题函项的项;所
以我们说的话实际上只是关于命题函项而不是关于命题函项的这个或那个值
的。

然而还存在着某种为我们关心的重大问题。已知两个命题函项jx和ψ
之间的一种概率关系,我们可以把这种关系当作ja和ψ之间的一种关系(x) ,只要“jx和“ψ”不包括“”在内的话。这是在xa 概(a) 率的全部实际

应用上一个必要的公理,因为这样一来我们所要研究的问题才是个别的事
例。

我的结论是:凯恩斯的概串论的主要形式上的缺点在于他把概率当作命
题之间而不是命题函项之间的一种关系。我认为应用到命题上面属于这个理
论的用途而不属于这个理论本身。

第六章可信度

A。 通论
认为全部人类知识在不同程度上都是可以怀疑的看法是从远古就有的;

怀疑论者曾经主张过这种看法,在柏拉图学园的怀疑时期这种看法也流行一

时。莎土比亚这样挪揄过最可笑的极端的怀疑主义:

不相信星辰是火团,
不相信太阳的运转。

在他写诗的时候,哥伯尼早已对后一句话提出了怀疑,不久以后开普勒
和加里略也提出了更为有力的怀疑理由。前一句是荒谬的,如果“火”是按
照化学中所讲的那种意思的话。许多看来无可置疑381 的事物现任已经被人
看出很可能是错误的。科学理论本身随着新的证据的积累而不断发生变化;
慎重的科学家对于一种新的科学理论不会再抱有中世纪人们对于托勒密学说
所抱的那种信心。

但是尽管我们愿意当作“知识”来看的那种东西的每一部分在某种程度
上可能都是可以怀疑的,显然某些事物几乎是确定无疑的,而另外一些事物
则是毫无把握的揣测。对于一个有理性的人来说,存在着一个表示不同程度
的怀疑的尺度,这个尺度的一端是简单的逻辑和算术上的命题以及知觉判
断,另一端则是类似麦西尼①人说的是什么语言或者希腊神话中妖女唱的是什
么歌那样的问题。我们的最无可置疑的信念是否带有任何程度的可疑性不是
我们现在需要研究的问题;我们只需要研究任何一个我们具有合理根据而对
之抱有某种程度的相信或不相信的命题在理论上都可以排列在一个以必然的
真理和必然的荒谬为两端的尺度之上。这些极端是否可以包括在这个尺度之
内,我们可以暂时作为一个悬而未决的问题。

数学上的概率和可信度之间存在着某种关连。这种关连是:如果一个命
题对于所有有关证据来说具有某种数学上的概率,那么这就确定了它的可信
度的大小。举例来说,如果你正要掷骰子,“掷成双六”这个命题只有“掷
不成双六”这个命题所具有的可信度的三十五分之一。所以对于每个命题都
给予适当的可信性的有理性的人只要可能就将以数学的概率论作为行为的
指导。

可是“可信度”这个概念在应用范围上却比数学上的概率的概念广泛得
多;我认为它适用于每个命题,除了那些既不是数据又不是以有利于或不利
于承认这些数据而与这些数据相关的命题。我特别认为它适用于那些已经尽
可能接近于只表示数据的命题。如果这个看法在逻辑上站得住的话,我们就
必须认为一个命题所具有的可信度本身有时就是一种数据。我认为我们应当
认为一种数据所具有的可信度有时是一种数据,有时(也许永远)却不具备
必382 然性。在这种情况下,我们可以认为只有一种数据,即一个具有可信
度的命题;我们也可以认为这种数据与它的可信度是两种不同的数据。我将
不去研究在这两种看法当中我们应该采纳哪一种看法。

一个不是数据的命题可以由许多不同的来源取得可信性;一个想证明自

① 麦西尼,古希腊城市名。——译者

己清白无罪的人可以同时根据本人不在现场和他以前的良好品德来进行辩
护。有利于一种科学假说的理由实际上永远是几方面合成的。如果人们承认
一种数据可能不具备必然性,那么它的可信度可能由于一种论证而增加,或
者与此相反,它的可信度可能由于一种反面论证而变得很小。

一个论证带来的可信度是不能单纯估计出来的。首先让我们看最简单不
过的情况,即其中前提具有必然性而论证在正确有效的情况下具有证明性
质。在每一步我们必须“看清”这一步的结论得自它的前提。有时候这很容
易;比方说,如果论证是巴巴拉式的三殷论法。在这种情况下,前提与结论
之间的关连所具有可信度几乎就是必然性,结论几乎和前提具有同样的必然
性。但是在一个困难的数学论证中,推理上发生谬误的机会就大得多。在一
个高明的数学家看来,逻辑关连可能十分清楚,而一个学生却只能偶而才查
觉到这种关连。这个学生相信这一步的正确性的理由并不完全是逻辑上的;
这些理由有一部分来自权威方面的论证。这些论证绝不是证明性质的,因为
就连最高明的数学家有时也会发生错误。根据这一类的理由,象休谟所指出
的那样,一个长的论证的结论比一个短的论证的结论具有较小的必然性,因
为在每一步都有某种发生谬误的危险。

通过某些简单化的假说,我们可以把这种不确定性的来源限制在数学的
概率论的范围之内。假定人们已经证实在数学的某一分支中,高明的数学家
在所有实例中就论证中的一步来说推理正确的比例是x;那么他们在n 步的
论证中推理

返回目录 上一页 下一页 回到顶部 2 3

你可能喜欢的